“Disrupting” Water Resources Management

A New World of Disruptive Technologies for Water Resources Planning and Management

Dr. Nagaraja Rao Harshadeep (Harsh)
Global Lead (Disruptive Technology)

Economic and Social Commission for Western Asia (ESCWA)
March 3, 2020, Beirut, Lebanon
Multiple sectors, multiple institutions, linked by water and natural resources…

A Typical Watershed…

…Need for Shared Vision supported by modern information, institutions, and investments…
Transboundary Water Contexts:
- River Basins
- Lake/Inland Sea Basins
- Groundwater Aquifers
- Marine Areas
- Precipitation-sheds
What’s Broken?

Information
- Data coverage and quality
- Widespread use of modern analytical tools
- Public access to data, tools, and knowledge products

Institutions
- Technical capacity
- Meaningful stakeholder involvement
- Decision making
- Collaboration/Partnerships

Investments
- Infrastructure deficit (storage, power, transport, agriculture, sustainable land management, ...)
- Inadequate monitoring and forecasting systems
- Poor office infrastructure and equipment
- Investment coordination
Modernizing Approaches to Address these Challenges...

The 3 Is...

Information & Analysis

Institutions & Policy

Investments & Operations
Information & Analysis

- **Resource Information Base** (standards; harmonization; data rescue; monitoring; comprehensive spatial, temporal and other databases; improved use of satellite data; documents)

- **Knowledge Products/Special Studies** (maps, Atlases, interactive toolkits, surveys)

- **Access and Outreach mechanisms** (data services, publications, web portals, Apps with public access to open data services, technical/ success stories, multimedia documentation)

- **Analytical Tools** (models/Decision Support Systems for planning/operations support in an integrated systems context)
Institutions & Policy

- **Strengthening Institutions** (office modernization, stakeholder participation, capacity development and training incl. distance learning, improved links with academia, internships, visiting experts, professional networks/communities of practice; forums, competitions)

- **Strengthening Policies** (streamlining institutional design/policy/mandates, improving synergy, economic instruments, decentralization)

- **Innovative Instruments** (e.g. knowledge-driven facilitated diplomacy, policy instruments, incentive frameworks)
Investments & Operations

• Preparation of a new generation of modern investments (with adequate attention to technical, environmental/climate, social, economic, and institutional aspects) – upgrading existing infrastructure and building new infrastructure analyzed in a systems context and reflecting innovation and climate-smart development

• Implementation facilitation, monitoring, and lessons (adequate technical assistance, ownership, services, M&E)

• Infrastructure planning and operational coordination
There are many ongoing changes...

- Urbanization
- Rising Expectations
- Climate Change
- Disruptive Tech
“DISRUPT”
DECISION SUPPORT

- **Data Collection**: Monitoring/Surveys (in-situ sensors/IoT, Earth Observation, UAVs, crowdsourcing...); Digitization
- **Data Management** (telemetry, cloud services, open data services, Blockchain, ...)
- **Data Analysis** (Big data, Geospatial/AI/Machine Learning, modeling, script repositories ...)
- **Data Access** (open data APIs, data visualization, gamification, mixed reality-AR/VR, ...)
- **Outreach**: Platforms/Portals/Apps/e-books/Competitions
“DISRUPT” PRODUCTION

- 3D printing/additive manufacturing
- Automation/Robotics/automated transport
- Advanced materials/nanotech/biotech/clean tech/ smart energy/ smart farms...
“DISRUPT” INTERACTION

- Social Media
- Knowledge/Learning Platforms
- Crowdsourcing, gamification, competitions
- Mobile money, Fintech
- Maker movement/DIY/Tech Incubators
- Sharing economy
All Companies will be Data Companies...

90% of the World’s data has been produced in the last 2 years...

Two-thirds of the jobs today’s kids will pursue haven’t even been invented yet...

- IoT can add US$2.7-6.2 trillion annually by 2025...
- Autonomous transportation could have a US$7 trillion annual revenue stream...
- Blockchain will deliver US$3.1 trillion in value by 2030...
- AI will add US$15 trillion to the global economy by 2030...
- AR/VR will disrupt a US$30 trillion industry...
- 3D printing will disrupt the US$30 trillion manufacturing sector...
- Robots could disrupt the US$15.5 trillion construction industry...
- Clean energy tech could be a US$50 trillion industry...
- The sharing economy could be $335 billion by 2025...
- Nanotechnology is already a US$1 trillion industry...
- Fintech eyes US$124 trillion of transfer payments...
>900,000 worth of applications in a smart phone today

<table>
<thead>
<tr>
<th>Application</th>
<th>$ (2011)</th>
<th>Original Device Name</th>
<th>Year*</th>
<th>MSRP</th>
<th>2011's $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video conferencing</td>
<td>free</td>
<td>Compression Labs VC</td>
<td>1982</td>
<td>$250,000</td>
<td>$586,904</td>
</tr>
<tr>
<td>GPS</td>
<td>free</td>
<td>TI NAVSTAR</td>
<td>1982</td>
<td>$119,900</td>
<td>$279,366</td>
</tr>
<tr>
<td>Digital voice recorder</td>
<td>free</td>
<td>SONY PCM</td>
<td>1978</td>
<td>$2,500</td>
<td>$8,687</td>
</tr>
<tr>
<td>Digital watch</td>
<td>free</td>
<td>Seiko 35SQ Astron</td>
<td>1969</td>
<td>$1,250</td>
<td>$7,716</td>
</tr>
<tr>
<td>5 Mpixel camera</td>
<td>free</td>
<td>Canon RC-701</td>
<td>1986</td>
<td>$3,000</td>
<td>$6,201</td>
</tr>
<tr>
<td>Medical library</td>
<td>free</td>
<td>e.g. CONSULTANT</td>
<td>1987</td>
<td>Up to $2,000</td>
<td>$3,988</td>
</tr>
<tr>
<td>Video player</td>
<td>free</td>
<td>Toshiba V-8000</td>
<td>1981</td>
<td>$1,245</td>
<td>$3,103</td>
</tr>
<tr>
<td>Video camera</td>
<td>free</td>
<td>RCA CC010</td>
<td>1981</td>
<td>$1,050</td>
<td>$2,617</td>
</tr>
<tr>
<td>Music player</td>
<td>free</td>
<td>Sony CDP-101 CD player</td>
<td>1982</td>
<td>$900</td>
<td>$2,113</td>
</tr>
<tr>
<td>Encyclopedia</td>
<td>free</td>
<td>Compton’s CD Encyclopedia</td>
<td>1989</td>
<td>$750</td>
<td>$1,370</td>
</tr>
<tr>
<td>Videogame console</td>
<td>free</td>
<td>Atari 2600</td>
<td>1977</td>
<td>$199</td>
<td>$744</td>
</tr>
</tbody>
</table>

Total: free
$902,065
"Disrupting" Development
An Interactive Primer on Disruptive Technology in Development

Table of Contents

Introduction
Acknowledgements
Key Development Challenges
- Environmental
- Economic
- Social
Emerging Disruptive Technologies
- Types of Disruptive Technology
- Examples of Disruptive Technology
Disruptive Tech in Development
- Rethinking Development
- Disrupting our Challenges
- Explore Global Resources at your Fingertips
 - Interactive Tech Application Explorer
 - Casestudies
Looking Ahead
- Regulatory Environment
- Moving Ahead...

World Bank e-book on Disruptive Tech (draft)
http://www.appsolutelydigital.com/dt/
Disruptive tech could change Development

Making “smart development” wrt climate, water and natural resources, energy, food, waste, mobility, knowledge, services, networks.

Online Services

Green Energy

Broadband & Smartphone Access

Apps, e-services & e-learning

Access to a new world of Data, Information, Knowledge and Services

Planning

3D Printed Infrastructure

Sensors/IoT (e.g. for soil moisture)

Drones/UAVs (e.g. for monitoring, seeding, delivery)
Fundamental Project Design Implications

Solar-covered Canals

“Floto-voltaics”
Many multi-sectoral implications (incl. for the Amazon!)

A third of global agricultural water use is for fodder!

70% of agricultural land is used for pasture (~28m km²)!

<table>
<thead>
<tr>
<th>Water Use</th>
<th>GHG Emissions</th>
<th>Land Use</th>
<th>Production Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal-based</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1799 gallons</td>
<td>16 pounds</td>
<td>260² ft</td>
<td>$1.05</td>
</tr>
<tr>
<td>Lab-grown</td>
<td></td>
<td></td>
<td>$12</td>
</tr>
<tr>
<td>324 gallons</td>
<td>3.52 pounds</td>
<td>2.6² ft</td>
<td></td>
</tr>
</tbody>
</table>

Usage, emissions, cost per pound of meat

Sources: CB Insights, Water Footprint Network, Business Insider, Forbes, Food Climate Research Network (FCRN), Quartz
Livestock:
• Supports 1.3 billion people
• 40% of global value of agricultural output
Cloud Services

Top-Down Data Acquisition System → IoT

Satellite & UAV Earth Observation

GIS and other datasets
Data Rescue

Data Management
Analytics/Models

Big Data

Platforms

Machine Learning/AI

Crowdsourcing

Web Portals/Apps/e-books

Stakeholder Alerts

Operational Control Rooms

Manual Monitoring

Automated Monitoring

Bottom-up Data Acquisition System → IoT
Data → Information → Knowledge → Wisdom to make Decisions
Flood Coping Actions
(stakeholder actions to minimize loss of life / livelihood)

Dissemination
(Stakeholder Channels – DSS, Bulletins, SMS, Radio, TV, Social Media, Portals, Apps, Podcasts, phone, emails, …)

Flood Early Warning & Recommendations

Products & Services
(Formats, Frequency, Messaging, Customization, Media)

Weather Forecasts

Hydrologic Forecasts

Flood Inundation Forecasts

Models
(Season to nowcasting; statistical/ hydrologic systems/ hydrodynamic, …)

Surveys
(detailed Digital Elevation Model, Soils, Water Infrastructure Status)

“Top-Down” Data
(from remote sensing/ earth observation products)

“Bottom-up” Data
(from field gauges, manual reporting, crowdsourcing)

Data Value Chain: Coping with Floods
Basin Planning
Envisioning the Future

Point A: Current Situation

Strategy

Point B: Future Vision

Support Program

Institutions

Information

Investments
Analytical & Stakeholder Tracks to Multi-sectoral Spatial Planning...
Big Data – on the ground...

Wisdom of the Crowd

In-Situ Sensors: Now when a tree falls in a forest, you can actually hear it!
Competitions

Water Appathon
Water Hackathon
Data Jams
X-Prize
Internships
E-books, Designs, Products, Processes...
Benefits of using emerging technology

- Cheaper, faster, better, ...
- More participatory, information-based decisions
- Do things not possible before, smaller world...

Risks of using emerging technology

- Traditional jobs becoming obsolete
- Changes in decision making
- Privacy, Cybersecurity, Accelerated pace of change...
Towards a Mashreq Platform
A new world of “Disruptive Technology”

“Disrupt” decision making

- **Data Collection**: Monitoring/Surveys (in-situ sensors/IoT, Earth Observation, UAVs, crowdsourcing...); Digitization
- **Data Management**: (telemetry, cloud services, open data, Blockchain, ...)
- **Data Analysis**: (Big data, Geospatial/Al/Machine Learning, modeling, script repositories ...)
- **Data Access**: (open data APIs, data visualization, gamification, mixed reality-AR/VR, ...)
- **Outreach**: Platforms/Social Media/Portals/Apps/e-books/Competitions

“Disrupt” production

- 3D printing/additive manufacturing
- Automation/Robotics/automated transport
- Advanced materials/nanotech/biotech/distributed energy/green tech...

“Disrupt” interaction

- Crowdsourcing, gamification, competitions (e.g. hackathons, appathons)
- Mobile money, Fintech
- Maker movement/ DIY/ Tech Incubators/OLC
- Sharing economy, Mobile learning
“Top-Down” Data Acquisition System

Cloud Services

GIS and other datasets
Data Rescue

Data Management
Analytics/Models

Big Data

Platforms

Machine Learning/AI
Crowdsourcing

Web Portals/Apps/e-books

Stakeholder Alerts

Operational Control Rooms

Manual Monitoring
Automated Monitoring

“Bottom-up” Data Acquisition System → IoT

Satellite & UAV Earth Observation

Data source: NOAA, 2006
Click on stream to delinate its watershed.
Disrupt or Be Disrupted!

harsh@worldbank.org