Non-sampling errors in survey data on mortality & fertility: implications for demographic estimation in unsettled environments

Bruno Masquelier1,2

1Université catholique de Louvain, Belgium
2Institut National d’Études Démographiques (INED)

Civil Registration in Refugee Settings: Technical Meeting UN ESCWA - December 2016
In countries where vital registration systems remain incomplete, survey and census reports are a key source of mortality and fertility estimates, and are sometimes used to validate VR data.

- Censuses and large-scale surveys include questions on recent births & deaths, orphanhood, and children ever born/surviving.
- Full & summary birth histories in population-based surveys are the main avenue for estimating recent trends in mortality (and fertility).
- Sibling survival histories (SSH) collected in DHS and other survey programs are increasingly used to generate estimates of adult mortality (e.g. Global Burden of Disease Study).

What are the main reporting errors in these retrospective reports and how do these errors affect our ability to assess the quality of VR data?
Objectives

1. Present the main strategies available to retrospectively collect data on mortality and fertility in the absence of CRVS, with a focus on conflict-affected areas.
 - how are non-sampling errors evaluated and adjusted for?
2. Highlight some challenges in the assessment of completeness and quality of vital registration based on surveys/censuses.
3. Put forward a number of suggestions to improve mortality measurement through population-based surveys.
 - collecting parental survival histories, revising sibling survival histories, introducing VAs in surveys, adding questions on places of death/death certification.
Approaches to mortality estimation in countries with limited VR systems

Reports on recent household deaths

Widely used in national censuses and large-scale surveys around the world. Usually restricted to residents of the household, asked to the head of household, and referring to the 12 months prior to data collection:

- Age and sex of the deceased
- Date of death
- Place of death
- Main cause of death according to the respondent (mostly to identify pregnancy-related deaths, and sometimes violent deaths).
- In some (rare) cases, death registration (e.g. Senegal 2013, Jordan 2015, Nicaragua in 2005, ...).

Ideally, one should also know the dates of arrival and departure of HH members.
Questionnaire used in the Jordanian census

<table>
<thead>
<tr>
<th>Serial number of deceased person</th>
<th>Name of deceased person</th>
<th>Sex of deceased</th>
<th>Age at the time of death</th>
<th>Is the event of death has been registered?</th>
<th>Marital status at death</th>
<th>Was she pregnant at time of death?</th>
<th>Did she die during delivery?</th>
<th>Was the death during the 42 days of the birth?</th>
<th>Was death due to an accident?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Male</td>
<td></td>
<td></td>
<td></td>
<td>1. Yes, yes go 311</td>
<td>1. Yes, go to next section</td>
<td>1. Yes, go to 311</td>
<td>1. Yes, go to next section</td>
<td>1. Yes, go to next section</td>
<td>1. Yes</td>
</tr>
<tr>
<td>2. Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. No</td>
</tr>
</tbody>
</table>

(Note: deaths of Syrians would need to be identified from the nationality of the surviving household members).
Most frequent non-sampling errors in data on HH deaths:

1. omissions of deaths,
2. misunderstandings related to the reference period,
3. systematic misstatement of ages at death and heaping,
4. difficulties in identifying residents of the household, leading to multiple reporting or underreporting,
5. household dissolution after the death of a household member.

Adjustments for incompleteness are possible based on death distribution methods (GGB, SEG or both), but these methods are underpinned by strict assumptions (Moultrie et al., 2013): migration is negligible or known, completeness of death reporting invariant by age, etc.

Not recommended in unsettled environments.
Recent household deaths in large-scale surveys in conflict-affected areas

Examples of surveys on Iraqi deaths:

▶ Iraq Family Health Survey Study Group (2008)(March 2003 through June 2006)

▶ Hagopian et al. (2013) in Iraq in the 2003–2011 period: every household head was asked in 2011 about births and deaths since 2001. Secondary data sources were used to correct for out-migration.
Example of the questionnaire used by Hagopian et al. (2013)

<table>
<thead>
<tr>
<th>Death no.</th>
<th>Sex M/F</th>
<th>Date of death? month & year</th>
<th>What was the cause of death? (codes)</th>
<th>May I see the death certificate?</th>
<th>Was the death war related? Y/N/DK</th>
<th>If war-related, what was the cause? (codes)</th>
<th>If war related, who do think was responsible? Codes</th>
<th>Was fatal event at the house or > 1km away?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(d) Under 18 causes of death: 1=diarrhea, 2=respiratory, 3=pre-term, 4=neonatal causes, 5=injury (not war), 6=injury (war), 7=neonatal tetanus, 8=cancer/tumor 9=other, 10=don't know,

(d) 18 and over Adult causes of death: 11=cardiovascular, 12=cancer, 13=injury (not war), 14=injury (war), 15=lung disease, 16=liver disease, 17=maternal, 18=kidney condition, 20=other, 21=don't know

(g) Causes of violent death related to war: 1=road accident that was war related, 2=gunshot, 3=car bomb, 4=airstrike, 7=other explosion, 8=other war injury, 9=don't know

(h) Responsible parties for war deaths: 1=criminals, 2=Iraq police (security forces), 3=Iraq army, 4=coalition forces, 5=militias, 6=unknown, 7=other

(j) Death certificate: 1=able to see the death certificate, 2=told there is a death certificate, but did not see or death certificate not available.

Note: causes of death are established based on household reports, with a brief list. Would VA be feasible?
Approaches to mortality estimation in countries with limited VR systems

Additional questions worth considering for HH deaths

1. Some attempts to confirm deaths by asking to see the death certificates (Roberts et al., 2004; Hagopian et al., 2013).
2. Use of national events calendar and age/birth-year charts to assist with recalling dates of birth or death (Hagopian et al., 2013).
3. Question on places of death: the reliability of registration data is probably lower for deaths occurring outside health facilities.
4. Was the death reported to UNHCR?
Sibling survival histories

Used in more than 100 Demographic and Health Surveys (DHS). Respondents are asked to list all their maternal siblings and report their survival status, sex, ages at survey or at death, and the dates of death.

With additional questions to identify pregnancy-related deaths.
Sibling survival histories

- Event/exposure-type rates; limited modeling is required.
- Frequent, up-to-date estimates with relatively large sample of deaths (considering the survey sample)
- Not sensitive to migrations, not dependent on model life tables
- Widely collected, standardized in DHS, and similar format to birth histories,
- A single survey can give a certain sense of past trends in mortality,
- Assumptions are not as strong as in other types of indirect methods, but some modeling is required to reduce the scatter around age-specific mortality rates.
Selection biases

- No information is available for sibships without a surviving member: sibships with high mortality are under-represented.
- Low mortality sibships are over-represented because the experience of the respondent’s siblings is counted multiple times when more than one sibling might be interviewed.
- The respondents themselves are not counted in the denominator.

Trussell and Rodriguez (1990) showed mathematically that these three limitations neutralize each other, provided that:

1. all siblings in the sampling frame are interviewed,
2. the respondents are not included,
3. there is no association between mortality and sibship size.

This was confirmed by microsimulations (Masquelier, 2013).
Recall biases in sibling histories include the following (Helleringer et al., 2014a):

- **List errors**: omissions of (deceased) siblings or inclusion of others who are not maternal siblings;
- **Vital status errors**: reporting that a deceased sibling is alive;
- **Age and date errors**: missing data on current ages, ages at deaths and the timing of death (usually not a serious concern), heaping and systematic misstatement of ages at death, displacement of deaths.
Estimated rate ratios associated with the number of completed years prior to the survey, estimated by pooling together all overlapping periods in 80 DHS conducted in 28 sub-Saharan countries. Sc: Masquelier et al. (2014)

Similar adjustment in the GBD 2013 (here, not country-specific and not linear). Deaths and exposure time that predate each survey by 15 years or more are often discarded.
Use of sibling histories in conflict-affected areas

- Iraq Family Health Survey Study Group (2008) on mortality in Iraq from 2002 to 2006: reasonable consistency with the estimates from recent HH deaths.

We developed a new SSH questionnaire, the siblings’ survival calendar (SSC)

- including additional recall cues designed to limit omissions of siblings,
- adopting a life calendar format to improve reporting of ages and dates.

We tested the SSC questionnaire against a standard DHS-type questionnaire during a randomized controlled trial (RCT) conducted in a demographic surveillance site (Niakhar, Senegal) (Helleringer et al., 2014b).
Approaches to mortality estimation in countries with limited VR systems

A validation study of sibling histories (2)

- located 120kms southeast of Dakar
- started in 1962, covering about 43 000 inhabitants
- low levels of educational attainment, high levels of mobility
- update visits now 3 times a year
- mother ID number established at first entry or at birth
Approaches to mortality estimation in countries with limited VR systems

Siblings’ survival calendar

- Standardized script used to sensitize respondents to the issue of misreporting
- List of maternal siblings in the order that they come to mind
- Non-specific prompting (reading back the list of siblings)
- Additional recall cues:
 1. Any other deceased siblings?
 2. Any other siblings that migrated?
 3. Any other siblings with a different biological father?

Based on results from a pilot study in another HDSS in Senegal (Bandafassi) (Helleringer et al., 2014a).
1. Political or sporting events used as landmarks.
2. Events affecting the respondent in terms of residence, marriages, births and schooling
 ▶ Help to anchor the reporting of siblings’ events.
3. Sibling section with sex, dates of births and deaths
Study participants and data collection

- Individuals who have ever been members of the HDSS, aged 15 to 59, with one known sibling in the HDSS dataset.
- All sibships with at least one adult death were selected ($n=592$) with two respondents (to assess the inter-sibling reliability) when available.
- 500 additional sibships in which all siblings were still alive were selected at random.

- The study team was made of 8 interviewers who had previously been included in DHS data collection in Senegal.
- Absent residents and migrants were followed-up in Dakar, Mbour and their suburbs, and within 50 miles of the HDSS.
Approaches to mortality estimation in countries with limited VR systems

Data quality

- Low proportions of missing data (< 1%), with significantly lower proportions of missing ages at survey in the SSC.
- Much less heaping in the SSC than in the DHS.

Index:

$$\frac{N(a)}{0.5 \times (N(a+1) + N(a-1))}$$
Approaches to mortality estimation in countries with limited VR systems

Reporting of deaths

Sensitivity is the proportion of concordant among sibships with at least one adult death. Significant improvement in the reporting of adult female deaths.

<table>
<thead>
<tr>
<th></th>
<th>DHS</th>
<th>SSC</th>
<th>DHS</th>
<th>SSC</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult female deaths</td>
<td>75/99</td>
<td>85/95</td>
<td>75.6</td>
<td>89.6</td>
<td>0.027</td>
</tr>
<tr>
<td>Adult male deaths</td>
<td>173/201</td>
<td>170/200</td>
<td>85.8</td>
<td>85.1</td>
<td>0.848</td>
</tr>
</tbody>
</table>

Specificity is the proportion of concordant among sibships with no adult death.

No evidence of more frequent "additions" (cousins, etc.), i.e., it did not increase the number of false reports of deaths.
Proportion of deaths due to maternal causes

In the Niakhar HDSS, SSH collected using the DHS questionnaire significantly overestimated the proportion of pregnancy-related (PR) deaths among women aged 15-49.

- PR deaths were more likely to be reported (96%) than non-PR deaths (71%).
- PR deaths were correctly classified as such (93%) but 20% of non-PR deaths were classified as PR.

The SSC questionnaire yielded almost unbiased estimates of the proportion of deaths due to pregnancy-related causes.
Approaches to mortality estimation in countries with limited VR systems

Deaths from external causes

Large bias also observed in the proportion of deaths due to external causes in sibling histories (here we could not separate the questionnaires).

<table>
<thead>
<tr>
<th>Sibships with adult death from external causes</th>
<th>Sibships with adult death from other causes</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported/exp. %</td>
<td>Reported/exp. %</td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(95% CI)</td>
<td></td>
</tr>
<tr>
<td>All deaths</td>
<td>34/35</td>
<td>498/568</td>
</tr>
<tr>
<td></td>
<td>(82.2, 99.6)</td>
<td>(84.7, 90.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.093</td>
</tr>
</tbody>
</table>

Deaths due to external causes were more frequently reported.
Sensitivity was low, while specificity was high.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correct/</td>
<td>Correct/</td>
</tr>
<tr>
<td></td>
<td>reported</td>
<td>reported</td>
</tr>
<tr>
<td></td>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>All deaths</td>
<td>20/34</td>
<td>479/498</td>
</tr>
<tr>
<td></td>
<td>58.8%</td>
<td>96.2%</td>
</tr>
</tbody>
</table>

The likely direction and extent of bias in survey estimates of the proportion of deaths due to external causes will vary across populations. If the true proportion is above 10%, then survey data will most likely underestimate the proportion.
Approaches to mortality estimation in countries with limited VR systems

Orphanhood method

Questions on parental survival are widely used in large-scale surveys and censuses since the mid-1960s to estimate adult mortality.

- No information is collected on the ages of surviving parents or the ages at deaths, and the timing of deaths is unknown.
- Proportions of surviving parents are converted into life table probabilities, using the age of the respondents as a proxy for the duration of exposure. Several methods exist (Brass and Hill, 1973; Timæus, 1992).

Main reporting errors:

- Adoption bias (fostered orphans being reported as non-orphans), more pervasive among young respondents are for mothers.
- Misreporting of the ages of respondents.
Seldom used in conflict-affected areas:

- Hirschman et al. (1995) included orphanhood questions in the 1991 Vietnam Life History Survey, with questions on current ages, ages at death, and the timing of deaths. Parental and sibling histories were highly consistent.

Collecting data on ages at death and dates of death would be useful for estimating mortality among older adults (but has seldom been tested so far).
Estimating fertility/mortality from birth histories

Relatively straightforward based on the DHS or MICS instruments. The main non-sampling errors include:

- Shifting births to the more distant periods to avoid specific questions on recent births.
- Omissions of births and deaths (especially in the distant past)

DHS contain questions on the registration of births in the household questionnaire (e.g. Jordan 2012 DHS → 2017 DHS?), but . . .

- limited to children who are alive at the time of the survey.
- is based on reports from the HH deaths, probably mixing birth notification/registration, or other institutional documents.
Estimating fertility from censuses

Questions on births in the past 12 months or date of last child born alive are widely used (but these were not asked in the last Jordanian census).

- Such reports are affected by reference period errors, and omission of neonatal deaths.
- In the absence of data on fertility, one can also use the “own children" method, using the child’s age and mother’s age to estimate a series of annual fertility rates (with additional mortality estimates).
Conclusion

Birth registration

- Population-based surveys usually provide reliable estimates of fertility and allow for a direct estimation of birth registration completeness (2017 Jordan DHS?)
- An additional quantitative survey could shed light on the specific barriers to full registration (with specific questions on birth notification, birth certification, and dates of these events, place of birth, etc.)

Death registration

- Given the uncertainty around mortality estimates, not clear that a new population-based survey would allow a proper evaluation of the completeness of death registration.
- Child mortality estimates remain uncertain, and adult mortality are probably not reliable enough to validate VR data based on a single survey.
W. Brass and K. Hill. Estimating adult mortality from orphanhood. In International Union for the

G. Burnham, R. Lafta, S. Doocy, and L. Roberts. Mortality after the 2003 invasion of Iraq: a

D. de Walque and P. Vervimp. The Demographic and Socio-economic Distribution of Excess Mortality

A. Hagopian, A. Flaxman, T. Takaro, S. Esa Al Shatari, J. Rajaratnam, S. Becker, A. Levin-Rector,
with the 2003-2011 War and Occupation: Findings from a National Cluster Sample Survey by the

S. Helleringer, G. Pison, M. Kanté, G. Duthé, and A. Andro. Reporting errors in survey data on adult

S. Helleringer, G. Pison, B. Masquelier, AM Kanté, L. Douillot, G. Duthé, Ch. Sokhna, and V. Delaunay.
Improving the quality of adult mortality data collected in demographic surveys: Validation study of a

C. Hirschman, S. Preston, and V. M. Loi. Vietnamese Casualties During the American War: A New

Iraq Family Health Survey Study Group. Violence-Related Mortality in Iraq from 2002 to 2006. *The

B. Masquelier. Adult Mortality from Sibling Survival Data: A Reappraisal of Selection Biases.

Z. Obermeyer, C. Murray, and E. Gakidou. Fifty years of violent war deaths from Vietnam to Bosnia:

I. Timæus. Estimation of adult mortality from paternal orphanhood: a reassessment and a new