Record-Linkage Studies

Marwan Khawaja

UN-ESCWA
Beirut, Lebanon
• Evaluating completeness and coverage of mortality statistics traditionally rely on indirect methods

• Indirect methods (Generalised Growth Balance Method developed by W Brass in the early 1970s) use census and registration data jointly but are loaded with assumptions – accurate census enumeration, no net migration and constant incompleteness rate by age.

• Results are usually used for life table construction but not routine measures of mortality

• Remain controversial - assumptions & results
• Ken Hill (2004-5) & Tony Barnes sensitivity tests (2008)
 – Different methods give different results
 – Results are sensitive to errors in the estimates of the size and the age structure of the population

• Preliminary results on data from several Arab countries give different estimates of incompleteness
Alternative: Record linkage and direct methods

• The process of linking data from two or more data sets
 – Mostly used for linking records from census and registration data
 – Has a long history – with many uses
 – Case re identification in capture re capture studies
 – Data cleaning – duplication of records etc.
 – Causal inference – matching studies
 – More recent interest in the ‘big data’ world

• Method pioneered by Fellegi-Sunter (JASA ‘69)
• Method is challenging: Two types of data linkage errors
 – Mismatches and non-matches
• More recent advances & Algorithms available in widely used software
Two main methods

• Deterministic record linkages
 – AKA, exact matching
 – Linking on first and last name: marwan khawaja, marwan khawajah, marwan khawajeh
 marwan khawaja, marwan khawaja, marwan khawaja
 • Only two outcomes: matched/unmatched

• Probabilistic record linkage
 – More recent
 – % of string characters matched perfectly
 – Determining threshold (%) for matched status is up to the researcher
 – Algorithms & assigning agreement weights are widely available

• Causal inference studies – known as propensity score matching
Consistency index

- Records are linked in two data sets (census and registration) to assess consistency in refugee identification.

<table>
<thead>
<tr>
<th>Census</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refugee</td>
<td>A</td>
</tr>
<tr>
<td>Non refugee</td>
<td>B</td>
</tr>
<tr>
<td>Total</td>
<td>C</td>
</tr>
<tr>
<td>Non refugee</td>
<td>D</td>
</tr>
<tr>
<td>Total</td>
<td>G</td>
</tr>
</tbody>
</table>

Overall consistency index = $A/(B+D+A)$ (refugee in both as % of total)
Consistent index for Census = A/C (refugee in both data sets as % of refugee in census)
Consistent index for Register = A/G (refugee in both data sets as % of refugee in Register)

1 = totally consistent
0.5 = number of consistent linked records the same as the number of inconsistent linked records
0 = totally inconsistent
Some challenges -

- Coverage problems in census & registers
 - as different from completeness

- Other data quality problems – for data used in matching:
 - Missing data on key variables (names, residence, date of birth, etc.)
 - Assumes fully updated registers – but often no the case (e.g., residence)

- Which source to use the master file (superior data set)?

- Inconsistencies in linked records can be substantial – and lead to biased estimates

- Privacy/ethical issues – e.g., census of Palestinian refugees in Lebanon
• EGM planned for the Fall, 2017
 – Needed Data from at least 2 countries to undertake a study
Thank you!